Local Polynomial Convexity
ثبت نشده
چکیده
We begin with the following question: given a closed disc D ⋐ C and a complex-valued function F ∈ C(D), is the uniform algebra on D generated by z and F equal to C(D) ? This question is complicated by the presence of points in the surface S := graph D (F) that have complex tangents. Such points are called CR singularities. Let p ∈ S be a CR singularity at which the order of contact of the tangent plane with S is greater than 2; i.e. a degenerate CR singularity. We provide sufficient conditions for S to be locally polynomially convex at the degenerate singularity p. This is useful because it is essential to know whether S is locally polynomially convex at a CR singularity in order to answer the initial question. To this end, we also present a general theorem on the uniform algebra generated by z and F , which we use in our investigations. This result may be of independent interest because it is applicable even to non-smooth, complex-valued F .
منابع مشابه
A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملFast Verification of Convexity of Piecewise-linear Surfaces
We show that a PL-realization of a closed connected manifold of dimension n − 1 in R (n ≥ 3) is the boundary of a convex polyhedron if and only if the interior of each (n− 3)-face has a point, which has a neighborhood lying on the boundary of a convex n-dimensional body. This result is derived from a generalization of Van Heijenoort’s theorem on locally convex manifolds to the spherical case. N...
متن کاملOn the convexity of C1 surfaces associated with some quadrilateral finite elements
We analyse the convexity property of two classical finite elements and of the associated piecewise polynomial C surfaces. The first one is the piecewise cubic quadrilateral of Fraeijs de Veubeke. The second one is a piecewise quadratic rectangle introduced by Sibson and Thomson and generalized by Sablonnière and Zedek. In both cases, we first study the local problem and then we extend our resul...
متن کاملOn locally convex PL-manifolds and fast verification of convexity
We show that a PL-realization of a closed connected manifold of dimension n − 1 in R (n ≥ 3) is the boundary of a convex polyhedron if and only if the interior of each (n− 3)-face has a point, which has a neighborhood lying on the boundary of a convex n-dimensional body. This result is derived from a generalization of Van Heijenoort’s theorem on locally convex manifolds to the spherical case. O...
متن کاملSum of Squares and Polynomial Convexity
The notion of sos-convexity has recently been proposed as a tractable sufficient condition for convexity of polynomials based on sum of squares decomposition. A multivariate polynomial p(x) = p(x1, . . . , xn) is said to be sos-convex if its Hessian H(x) can be factored as H(x) = M (x) M (x) with a possibly nonsquare polynomial matrix M(x). It turns out that one can reduce the problem of decidi...
متن کاملAlgebraic relaxations and hardness results in polynomial optimization and Lyapunov analysis
The contributions of the first half of this thesis are on the computational and algebraic aspects of convexity in polynomial optimization. We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves a problem that has been open since 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005